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Abstract. We study the decrease of fluctuations of diagonal matrix elements of observables
and of Husimi densities of quantum mechanical wavefunctions around their mean value upon
approaching the semiclassical regime (¯h → 0). The model studied is a spin(SU(2)) in a
classically strongly chaotic regime. We show that the fluctuations are Gaussian distributed, with
a width of σ 2 decreasing as the square root of Planck’s constant. This is consistent with the
random matrix theory (RMT) predictions, and previous studies on these fluctuations. We further
study the width of the probability distribution of ¯h-dependent fluctuations and compare it with
the Gaussian orthogonal ensemble of RMT.

The behaviour of quantum mechanical wavefunctions in the semiclassical limit has recently
attracted much interest. It is motivated by the fact that the spectrum alone cannot contain
all the information on the system. Roughly, one can say that in integrable systems
the eigenfunctions condense on classically invariant torii, while in chaotic ones, where
such classical structures have been destroyed, they tend to spread uniformly over the
whole classically allowed region. Few analytical results have been obtained, however, in
chaotic regimes, the most important of which perhaps is the Shnirelman theorem [3]. One
formulation of this theorem would be that in the limit ¯h→ 0, almost all the diagonal matrix
elements of almost all quantum mechanical observables converge weakly to a constant over
the classically chaotic region. A few years ago Feingold and Peres [2] and more recently,
Eckhardtet al [1] studied the rate of this convergence for autonomous systems where the
semiclassical limit is, according to the Shnirelman theorem, the microcanonical phase-space
(i.e. classical) average. As they mentioned, ‘almost all quantum mechanical observables’
in this formulation exclude projection operators, and in general all operators are without
smooth classical limits. Moreover, the ‘almost all diagonal matrix elements’ still leave
room for scarring of eigenstates by short periodic orbits [4]. For those states, the limit
can be dramatically different from the Shnirelman-predicted one. Their conclusion is that
in a strongly chaotic system and for a smooth classical observableA(p, q) with which a
quantum operator̂A, Ajk := 〈Ej |Â|Ek〉, can be associated, the fluctuations of the diagonal
matrix elements

〈F 2
j 〉 := 〈(Ajj − {A})2〉 (1)
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around the semiclassical microcanonical average

{A} =
∫
A(p, q)δ(E −H(p, q))ddp ddq/

∫
δ(E −H(p, q))ddp ddq (2)

have the same order of magnitude as the mean square of the off-diagonal terms〈|Ajk|2〉
and decrease proportionally to the inverse of the Heisenberg time 1/TH ∼ h̄ upon
approaching the semiclassical limit, in agreement with the random matrix theory (RMT)
predictions. Here|Ej,k〉 are energy eigenstates of the Hamiltonian under consideration,
i.e. H |Ej.k〉 = Ej,k|Ej,k〉 and 〈. . .〉 means an average taken over neighbouring (in energy)
eigenstates. Their arguments are valid providedEj andEk are not too distant from each
other, but they do not need to be consecutive eigenvalues. Accordingly, the interval
of energy over which the averages are taken may or may not overlap. They relate the
proportionality coefficient to the autocorrelation function of the classical dynamical variable
A, C(t) := limT→∞ 1

T

∫ T
0 A(t + τ)A(τ) dτ , i.e.

〈F 2
j 〉 =

2

TH

∫ ∞
0

dt C(t). (3)

In particular, almost all diagonal elementsAjj tend to the semiclassical microcanonical
average as ¯h → 0. Equation (3) states among others thatquantum fluctuations are
proportional to classical correlations. Their argument is as follows. According to
Shnirelman’s theorem, the diagonal matrix element

〈Ej |Â(t)Â(0)|Ej 〉 → C(t) h̄→ 0. (4)

On the other hand, this matrix element is

〈Ej |Â(t)Â(0)|Ej 〉 =
∑
k

exp[i(Ej − Ek)t/h̄]|Ajk|2

=
∑
k 6=j

exp[i(Ej − Ek)t/h̄]|Ajk|2+ |Ajj |2. (5)

Thus we have∑
k 6=j

exp[i(Ej − Ek)t/h̄]|Ajk|2→ C(t)− {A}2 h̄→ 0. (6)

Defining the Fourier transform of the autocorrelation functionS(ω) := ∫∞
−∞ C(t) exp

(−iωt) dt we have

|Ajk|2 ≈ S((Ej − Ek)/h̄)/(2πρ(E)) =
∫ ∞
−∞

[C(t)− {A}2] dt Ej → Ek. (7)

Then, under the assumption that asEj → Ek, the eigenfunctions|Ej 〉, |Ek〉 and |±〉 := 1√
2

(|Ej 〉 ± |Ek〉) are qualitatively similar, i.e.

Ajk ≈ 〈−|Â|+〉
{A} ≈ 〈+|Â|+〉 ≈ 〈−|Â|−〉

(8)

we have

Ajk ≈ 〈−|Â|+〉 = 1
2(Ajj − Akk + Ajk − Akj ). (9)

Finally, by defining the fluctuations asFj := Ajj−{A} and assuming statistical independence
of the Fj ’s, i.e. the average〈F 2

j 〉 = 〈F 2
k 〉 = 2〈|Ajk|2〉 does not depend on the indicesj

andk, we get equation (3). Illustrations of this result on the double rotator model [2], the
bakers map and the hydrogen atom in a magnetic field [1] nicely confirm these predictions.
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These are, to our knowledge, the only works that deal with the qualitative description of
the approach to ergodicity of quantum mechanical wavefunctions. Here, we extend these
results to a kicked (e.g. non-autonomous) system. We will focus on the fluctuations of the
Husimi density of the eigenstates, i.e. study the fluctuations of the diagonal matrix elements
of the projection operator over coherent states [5]. The Hamiltonian

H := h̄

4ST
S2
z +

h̄κ

T
Sy

+∞∑
n=−∞

δ(t − nT ) (10)

is expressed in terms of the usualSU(2) spin operatorsSx , Sy andSz, while 06 κ 6 2π .
Models of this kind have been extensively studied [6] and are usually referred to as ‘kicked
tops’. They represent a spin which evolves during a timeT under the influence of an
integrable Hamiltonian after which it undergoes a rotation of the angleκ around they-axis.
It thus defines the time evolution (Floquet) operator:

UT := exp
(
−i
κ

T
Sy

)
exp

(
− i

4S
S2
z

)
. (11)

Previous investigations of this model have illustrated the remarkable agreement of its spectral
properties with the GOE/COE of RMT†. In this article we will consider fluctuations of
expectations values ofSU(2) operators taken over eigenstates of the Floquet operator (11).
The above argument leading to equation (3) must be slightly modified in order to apply it
to the map defined by equations (10) and (11). Instead of working with energy eigenstates
|Ej 〉 of an autonomous Hamiltonian, we deal with quasienergy eigenstates|ωj 〉 of a unitary
time-evolution operator. As a consequence, the microcanonical average of equation (2) is
replaced by a phase-space integral restricted to the corresponding connected chaotic region.
In our case and in a strongly chaotic regime equation (2) reads

{A} =
∫
S2
A(θ, φ) sin(θ) dθ dφ/

∫
S2

sin(θ) dθ dφ = 1

4π

∫
S2
A(θ, φ) sin(θ) dθ dφ (12)

i.e. we integrate over the whole sphereS2 instead of the energy surface. In the semiclassical
limit, the diagonal matrix elements

〈ωj |Â(t)Â(0)|ωj 〉 =
∑
k

exp[i(ωj − ωk)t/h̄]|Ajk|2→ C(t) (13)

provided the regime studied is classically strongly chaotic. Moreover, a similar argument
as before leads to

|Ajk|2 ≈ S((ωj − ωk)/h̄) (14)

and hence we recover equation (3). Here, we concentrate on the study of the eigenstates of
the unitary operator equation (11) in the regimeT = 50 andκ = 1.2. By standard numerical
computation of the Liapounov exponent [8] over the whole phase space, we check that in
this regime the classical motion is strongly chaotic. Moreover, we check that the quantum
mechanical operator equation (11) exhibits the usual characteristics of quantum chaos: its
level spacings statistics and spectral rigidity follow the predictions of the GOE/COE of
RMT. We stress that even though the perturbation destroys the time reversibility of the
system, a surviving symmetry still persists

∏ |µ〉 = | − µ〉. Because of the existence of
this antiunitary symmetry, the model obeys GOE/COE [9].

As mentioned in [1] the Shnirelman theorem leaves room for wavefunctions to show
large deviation from the semiclassical limit value. It only states that the proportion of such

† We recall the agreement of GOE (Gaussian orthogonal ensemble) and COE (circular orthogonal ensemble)
properties in the limit of large matricesN →∞ [7].
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wavefunctions should be negligible, i.e. in the semiclassical limit, they build a subset of
zero measure. For ‘almost all eigenfunctions’ then, the variance of these fluctuations should
vanish as ¯h → 0. However, this decay can be substantially perturbed by the scarring of
eigenfunctions by a short periodic orbit [4]: scarred eigenfunctions are front-line candidates
for exceptions to the Shnirelman theorem! Thus, they could significantly—and negatively—
affect our results. We must therefore find a way to estimate and eventually reduce the ratio
of such eigenstates and to this purpose we introduce thelevel curvature[10, 11]. The level
curvature is a measure of the sensitivity of an eigenvalue to an external perturbation. In
our model (10) for instance we can define it as the second derivative of an eigenvalue with
respect toκ

Kn = d2ωn (κ, T )

dκ2
. (15)

Intuitively, when the studied regime is highly chaotic, the spectrum shows a level repulsive
behaviour which results in a number of avoided crossings when varying one parameter.
In the direct vicinity of an avoided crossing, the curvature of two levels can be huge and
therefore the distribution of these values depends very sensitively on the regime studied,
i.e. on bothκ andT .

Scarred eigenstates shift almost linearly in energy when varying one parameter and hence
have generally small level curvatures. Consequently, it has been suggested that scarring
manifests itself in deviations of RMT predictions in the level curvature distribution [10, 11].
Though not yet rigorously proven, this statement is now widely accepted. This distribution
for the model defined by equation (11) in the regime studied is shown in figure 1. There is
a remarkable agreement with the GOE/COE (full curve) prediction [10]

P(k) = 1

2

1

(1+ k2)3/2
k = K

πρ̄〈( dωn
dκ )

2〉 . (16)

Here ρ̄ = 2π/(2s + 1) is the averaged level density. This indicates a small number of
scarred eigenstates, an agreement which was already obtained on a similar model in [10].
Therefore, scarring is not likely to influence our study.

Let us briefly outline our method. Our aim is to study the behaviour of the eigenstates
of equation (11) in the semiclassical limit, i.e. as ¯h→ 0, S →∞ so as to leave the product
h̄S constant. A peculiarity of such systems is that the parameter governing the convergence
to the semiclassical limit also governs the number of states 2S + 1 ∼ 1/h̄ and the density
of states. In order to determine the implication of this peculiarity on our study, we will
therefore check the validity of our results on GOE matrices.

The Husimi density of an eigenstate|ω〉 =∑S
µ=−S ωµ|µ〉 of equation (11) is defined as

the projection of this state onto a coherent state|θ, φ〉 of the spinSU(2) group [5]:

�Sω(θ, φ) := |〈ω|θ, φ〉|2

|θ, φ〉 :=
s∑

µ=−s

√(
2s

s − µ
)

sin

(
θ

2

)s−µ
cos

(
θ

2

)s+µ
ei(s−µ)φ|µ〉.

(17)

The Husimi density satisfies the assumptions of the Shnirelman theorem [3]. Indeed one
formulation of the latter refers to the uniform spreading of eigenstates|9chaos〉 over a
connected chaotic region of phase space which implies that

�S9(θ, φ) = |〈9chaos|θ, φ〉|2 −→
{

0 on the regular region

constant on the chaotic region.
(18)
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Figure 1. Distribution of level curvatures for the eigenstates of (11) andS = 200,T = 50 and
κ = 1.2. From the remarkable agreement with RMT predictions we conclude that the ratio of
scarred eigenfunctions is very small (see [10, 11]), and should therefore not influence our study.

Thus in our model, as ¯h→ 0, the Husimi density converges weakly to a constant over the
whole phase space. The�Sω are smooth functions ofθ andφ and thus can be expanded in
a multipole expansion over the basis of spherical harmonics:

�Sω(θ, φ) =
∑
l,m

√
4π

2l + 1
�Sl,mYl,m(θ, φ) (19)

wherel = 0, 1, 2, . . . ,2S andm = −l,−l+1,−l+2, . . . , l and|µ〉 is an eigenstate ofSz,
i.e. Sz|µ〉 = µ|µ〉. We used the convention to introduce the square root into this expansion.
This multipole expansion allows us to interpret the�Sl,m in terms of magnitude of fluctuations
of size∼ π

m+1 in theφ-direction and∼ 2π
l+1 in theθ -direction. We will thus get quantitative

results on the decrease of fluctuations as a function of their size. Let us recall that the
Shnirelman theorem implies that as ¯h = 1/S → 0, fluctuations of fixed and non-zerol must
vanish, i.e.�Sω(θ, φ) → �S0,0. However, it does not say anything about the behaviour of,
say,�Sl(S),m(S) asS →∞ whenl(S) andm(S) are monotonically increasing functions ofS,
i.e. investigating such multipoles could lead us to different conclusions than that of [1, 2].

Using the resolution of unity

1= 2s + 1

4π

∫
dθ dφ sinθ |θ, φ〉〈θ, φ| (20)

the normalization condition reads

1= 〈ω|1|ω〉 = (2S + 1)�S0,0

⇒ �S0,0 =
1

4(2S + 1)

(21)

i.e. the zeroth moment decreases as 1/S ∼ h̄ on approaching the semiclassical limit. Let
us note that this 1/S behaviour of the Shnirelman limit�S0,0 is a consequence of the
overcompleteness of the coherent states representation which necessitates the 2s + 1 factor
in the resolution of unity (20), hence it has no direct physical meaning. In the following,
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we therefore divide all higher multipoles�Sl,m by �S0,0 to consistently study their decrease

and introduce the notation̂�Sl,m := �Sl,m

�S0,0
. On the other hand, we have,

�̂Sl,m = 4(2S + 1)
s∑

µ=−s
ω∗µωµ+m(−1)s−µCs,s,ls,−s,0C

s,s,l
µ+m,−µ,m (22)

which gives a check of our numerical computation for smallS. However, the numerical
difficulty for computing the Clebsch–Gordan coefficientsCs,s,lµ+m,−µ,m for largeS leads us to

use the following numerically more stable and faster method to compute multipoles�̂Sl,m.
We define

MS
k,m(ω) := 4(2S + 1)〈ω|Skz Sm−|ω〉/Sk+m. (23)

It is straightforward to see that there is a linear relation between theMS
k,m and the�̂Sl,m (we

use the shorter notationγ = eiφ tan(θ/2))

MS
k,m(ω) =

1

Sk+m
Tr[|ω〉〈ω|Skz Sm− ]

= 2S + 1

4πSk+m

∫
d2γ 〈γ |ω〉〈ω|Skz Sm−|γ 〉

= 2S + 1

4πSk+m

∫
d2γ �̂Sω(γ ) ◦ (Sz◦)k(S−◦)m. (24)

The script lettersS stand for classical quantities, and for any functionf (γ ) we have defined
the product [12]:

f (γ ) ◦ Sz :=
(
Sz − γ ∂

∂γ

)
f (γ )

f (γ ) ◦ S− :=
(
S− + ∂

∂γ

)
f (γ ).

This allows us to write〈γ |ω〉〈ω|Skz Sm−|γ 〉 as a differential operator acting on̂�sω(γ ). The
trick is then to partially integrate this expression. After a little algebra we reach

2S + 1

4πSk+m

∫
d2γ �̂Sω(γ ) ◦ (Sz◦)k(S−◦)m

= (2S + 1+m)!
(2S)!2k+m4π

∫ 2π

0
dφ
∫ 1

−1
du e−imφ(1− u2)m/2PSk,m(u)�̂Sω (25)

where

PSk,m(u) =
(
(2S + 2+m)u−m− (1− u2)

d

du

)k
1 :=

k+m∑
l′=m

pl
′
k P

m
l′ (u) (26)

in terms of the Legendre polynomialsPml′ (u) andu = cos(θ). We finally get

MS
k,m(ω) =

(2S + 1+m)!
(2S)!(2S)k+m

k+m∑
l=m

1

2l + 1
�̂Sl,mp

l
k. (27)

It is thus possible to obtain thê�Sl,m through a matrix multiplication of the momentsMS
k,m(ω)

MS(ω) =M�̂S (28)

where we defined(MS(ω))k,m = MS
k,m(ω), (�̂

S)l,m = (2S+1+m)!
(2S)m �̂Sl,m and (M)k,l =

1
(2S)!(2S)k

1
2l+1p

l
k.
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Figure 2. Moment distributionP(�̂S1,0) as defined in (16) for a spinS = 600. The statistics
has been computed from 2404 even states of four realizations of (11) taken aroundT = 50 and
κ = 1.2. The agreement with a Gaussian (full curve) is remarkable. In the inset we show the
same curve on a semi-log plot.

Numerical inversion of this last matrix allows us to get the multipoles�̂Sl,m from the
numerical computation of the momentsMS

k,m(ω). The advantage of this method compared
with the direct computation of Husimi densities is the numerical stability. Moreover, if we
are interested in the first few multipoles, say up tol � S, then only the diagonal matrix
elements up toMS

l,m are necessary.

Figure 2 shows a plot of a moment distributionP(�̂600
1,0 ) obtained through computation

of 2404 diagonal matrix elements from four unitary matrices defined by equation (11)† close
to the regimeT = 50 andκ = 1.2. The agreement with the Gaussian fitting is remarkable
and allows us to conjecture that the fluctuations of the�̂Sl,m obey the probability distribution

P(�̂Sl,m) ∝ exp(−(�̂Sl,m − �̂∞l,m)2/(2σ 2
l,m)) (29)

where the mean valuê�∞l,m is the Shnirelman limit. This distribution narrows itself as
h̄ → 0, until finally the ‘almost all’ wavefunctions, i.e. those which obey the Shnirelman
theorem, have converged to their Shnirelman limit�̂∞l,m = 0, l 6= 0 and�̂∞0,0 = 1. In other
words,σ 2

l,m decreases asS increases. This decay follows a power law as shown in figure 3.
We have

σ 2
l,m ∼ S−1/2 ∀l 6= 0. (30)

As already mentioned, this law is valid for fixedl andm in the regimel, m� S.
We further did the same study on GOE matrices. We constructed theM-matrix defined

in equation (23) using eigenstates of a GOE matrix instead of the eigenstates|ω〉 of the
kicked top (11). The result is shown in figure 4 and indicates a decay of the width of the

† We have considered only the projection of (11) on even states, i.e. states which are left invariant by the parity
Π|µ〉 = | − µ〉.
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0.0

0.1

σ2 l,m

Figure 3. Log–log plot of the width of the Gaussian distribution of multipolesP(�̂Sl,m) for
model (11),m = 0 and l = 1 (squares),l = 3 (diamonds) andl = 5 (triangles) versus the
magnitude of spinS. The inset shows the width ofP(Re(�Sl,m)) for m = 2 andl = 2 (circles),
l = 3 (squares),l = 4 (diamonds) andl = 5 (triangles). In both cases, the full curve indicates
the S−1/2 decay.

Gaussian distribution of fluctuations of the Husimi density of the form (29). Let us note at
this stage that the relationship between this width and the fluctuations of observables similar
to those studied in [1, 2], is

(σ 2
l,m)

2 ∼ 〈F 2
j 〉. (31)

Indeedσ 2
l,m measures the fluctuations of the Husimi density. They are linearly related to

the matrix elements of observables according to equations (23) and (27). The fluctuations
of these matrix elements are roughly given by their square and hence we get equation (31).
We thus get the same 1/S decay of the fluctuations as in [1, 2]. In other words,the Husimi
density converges to its semiclassical value with a rate given by the square root of the rate of
convergence of diagonal matrix elements of observables.This rate is independent of the size
of the fluctuations. As for the shape of these fluctuations, the diversity of models studied to
date leads us to conjecture thatquantum mechanical systems with strongly chaotic classical
counterparts have Gaussian-distributed fluctuations of their diagonal matrix elements around
their microcanonical classical average (equation (2) or (12)).Apparently, the width of this
Gaussian decays like ¯h as h̄ → 0. This postulate is to be taken with the ‘almost all’
Shnirelman restrictions and excludes of course models such as the kicked rotator [14],
where quantum interference effects lead to localization of the wavefunction, thus destroying
the ergodicity of the quantum wavefunction†. In the classically strongly chaotic regime we
are dealing with here, the ‘localization length’ in the kicked top exceeds by far the total
number of eigenstates 2s + 1, hence no localization effect occurs [13].

† However, restriction of quantum averages to phase-space region smaller than the localization length should lead
to a similar behaviour.
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Figure 4. Log–log plot of the width of the Gaussian distribution of multipolesP(�̂Sl,m) for
GOE,m = 0 andl = 1 (circles),l = 3 (squares) andl = 5 (diamonds) versus the magnitude of
spin S. The full line indicates theS−1/2 decay.

Up to now we have shown that our model matches in every respect all the features
of a GOE random matrix: its spectrum exhibits level repulsion, its level curvature
statistics correspond to the RMT predicted distribution, and the statistical distribution of
the components of its eigenvectors tends to the semiclassical average in the same way,
which in its turn implies a decay of the width of the Gaussian distribution of the multipoles
�̂Sl,m defined in (19). However, as has already been said, there is absolutely no reason to
expect a similar decrease whenl is not small compared withS. We therefore turn our
attention to the behaviour of these multipoles.

We concentrate on the questions:
• is there a similar power-law decay for̂�Sl(S),m(S) when l(S) andm(S) are increasing

functions ofS?
• Are there possibly restrictions onl(S) andm(S) for this power law to remain valid?
Answering these questions gives us information on the minimal size1l,m of the relevant

fluctuations. From the Heisenberg uncertainty principle, quantum mechanics does not
resolve details smaller than ¯hd in the 2d-dimensional phase space of ad-dimensional system.
Hence, we have a lower bound for the fluctuations size1l,m = 2π2

(l+1)(m+1) 6 h̄ ∼ 1/S and
thus an upper bound forl andm: l, m 6 S. For the sake of simplicity we will restrict
ourselves to the study ofm = 0 multipoles withl ∼ S and

√
S using formula (22) with

random eigenfunction componentsωµ which corresponds to the GOE case†.
We show the result of this study in figure 5 forl(S) = S/2, 3S/4, S and 5S/4.

Obviously, theseS-dependent multipoles decay faster than those with fixedl and m.
Moreover, a Sc is likely to exist for eachl(S) above which the magnitude of the
corresponding fluctuation decays faster than a power law, possibly exponentially. However,

† Theωµ’s are random up to the normalization condition
∑S
µ=−S |ωµ|2 = 1 and the5-parity: ωµ 6= 0 either for

µ = −S,−S + 2,−S + 4, . . . , S or µ = −S + 1,−S + 3, . . . , S − 1.
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Figure 5. Log–log plot of the width of the Gaussian distribution of multipolesP(�̂Sl,m) for
GOE,m = 0 andl = S/2 (circles),l = 3S/4 (squares),l = S (diamonds),l = 5S/4 (triangles)
and l = √S (open diamonds) versus the magnitude of spinS. The upper and lower full lines
indicate a decay ofS−1.5 andS−36 respectively.

this latter conclusion must be taken carefully because of the restrictedS-range of figure 5†.
On the other hand, thel = √S-moment decay as a power law∼ S−3/2, at least in the
studied range of variation ofS.

In view of this, we conclude that, in the GOE case, the critical valuelc below which
the fluctuations are relevant either tends to a constant, or to infinity slower thanS, i.e.

lc ∼ Sα 0< α < 1. (32)

On the other hand, a previous study [15] of the kicked top emphasized the quasifractal
structure of the Husimi density of its eigenfunctions in the chaotic regime. This means that
fluctuations in both directions of phase space are present up to the smallest scale allowed by
the Heisenberg uncertainty, i.e. up to a size O(h̄1/2), which is consistent with equation (32)
with α = 0.5. The fact that the moment�√S,0 also shown in figure 5 decays more or less
as a power law

�√S,0 ∼ S−3/2 (33)

corroborates this conclusion: multipoles up tol ∼ √S are relevant, i.e.α = 1
2.

Nevertheless, nothing forces the eigenstates of a quantum chaotical model to match
those of a GOE matrix up to the smallest scales. It would therefore be highly desirable to
get a condition onα like equations (32), (33) for a quantum chaotical system. This could be
achieved by direct computation of�√S,m(S) by using equation (22). However, the numerical
difficulty associated with the computation of high-order Clebsch–Gordan coefficients renders
this task hardly fulfillable, as can be seen in figure 6 where we show results obtained for
�√S,0 through equation (22) averaged over more than 40 000 states for each point. On one
hand, the semiclassical randomness of the eigenstates is not attained for smallS, while on
the other hand, the Clebsch–Gordan coefficients limit the maximal spin magnitude. In other

† This restriction is due to the computation of the Clebsch–Gordan coefficients.
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Figure 6. Log–log plot of the width of the Gaussian distribution of multipolesP(�̂Sl(S),0) for

model (11),l(S) = √S andT = 50 andκ = 1.2, m = 0 andS = √S versus the magnitude
of spin S. The full curve indicates a decay ofS−1/2. We attribute the rather erratic behaviour
of the data to the numerically instable computation of high-order Clebsch–Gordan coefficients
(see text).

words, these two effects dramatically affect figure 6 left and right. Considering the size
of our statistics, we attribute to these effects the somehow erratic behaviour of�√S,0. In
figure 6, the full line indicating aS − 1.5 decay is shown as an eye guide, and constitutes
in no way a serious result.

In conclusion, our study of the Husimi density of eigenstates of the quantum spin
system defined by (10) and (11) has confirmed the Gaussian shape of fluctuations around the
semiclassical limit. These fluctuations decay in size with a rate of∼ 1/

√
S for l � lc ∼

√
S.

This rate possibly increases to 1/S3/2 when l is smaller but of the order oflc. Moreover,
this decay results in the same power law for the decay of fluctuations of diagonal matrix
elements of observables as in previous studies [1, 2], indicating perhaps universality. While
GOE results tend to confirm the quasifractality proposed in [15], numerical difficulties
forbade us to check it for the quantum dynamical system. Investigations to overcome this
difficulty are in progress. For the time being, let us just point out that the fact that GOE
eigenstates which seem to exhibit this quasifractality render it as a direct consequence of
the randomness of the states. The maximal randomness is then bounded by Heisenberg’s
uncertainty, but beside that, the quasifractality of the states seems to have no physical
content.
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